M1 Maths

A4-4 Inequalities

• solve single-unknown inequalities and graph the solutions on a number line

Summary Learn Solve Revise Answers

Summary

An inequality (or inequation) is a statement containing a <, >, \le or \ge sign instead of an = sign.

Inequalities can be solved in the same way as equations except that, when both sides are multiplied or divided by a negative number, the inequality sign is reversed.

Learn

Suppose there was a 100 m race for 5 year-olds in 3 years time. One might wonder how old a child would have to be now to have a prospect of entering.

Most people could answer this simply in their head: they would have to be 2. But we could also solve it with an equation: Let the child's age now be a; then the requirement is that a + 3 = 5. We can solve this by subtracting 3 from both sides to get a = 2.

Now suppose the children had to be 5 years or less at the time of the race. Then the equation would become $a + 3 \le 5$. Because we have $a \le \text{sign rather than } a = \text{sign}$, we call this an inequaliton or, more commonly, an inequality. It would also be an inequality if it had $a \ge 0$, <, or > sign.

Solving inequalities is very much like solving equations. We just get the unknown on its own on one side by performing inverse operations. So to solve $a+3 \le 5$, we would subtract 3 from both sides to get $a \le 2$. This tells us that the child must be 2 years old or less now if we want to enter it into the race.

A more complex inequality might be 2(x-5)+4>12. We would solve this as follows.

$$2(x-5) + 14 > 12$$

$$-14 - 14$$

$$2(x-5) > -2$$

$$\div 2 \qquad \div 2$$

$$x-5 > -1$$

$$+5 \qquad +5$$

$$x > 4$$

Of course, you don't need to include the operation lines.

There is just one difference from solving equations: if we multiply or divide both sides by a negative number, then we flip the inequality sign round the other way. > becomes <; < becomes >; \ge becomes \ge .

To see why, think about this: If -x < -5, then x > 5.

So to solve 12 - 2x < 3, we could proceed as follows.

$$12 - 2x < 3$$
$$-2x < -9$$
$$x > 4.5$$

Practice

Q1 Solve the following inequalities. Show working as laid out above.

(a)
$$x + 7 < 20$$

(b)
$$2a - 4 \ge 42$$

(c)
$$3(t+5) - 12 > 9$$

(d)
$$\frac{2x-5}{4} \le 3$$

(e)
$$-5w - 4 > 16$$

(f)
$$3(8-3s)+12 \le 3$$

(g)
$$4x + 5 < 3$$

(h)
$$2h + 1 \ge -8$$

(i)
$$3(r-5) + 2r \ge 8 - r$$

(j)
$$\frac{4}{(12-2c)} > 9$$

Graphing Solutions

The equation 4x + 5 = 13 has solution x = 2. This can be plotted (graphed) on a number line like this:

-4 -:

0

2

The inequality $4x + 5 \ge 13$ has solution $x \ge 2$. This can be plotted (graphed) on a number line like this:

-4 -

0

2 4

The thick line covers the possible values for x. The arrow indicates that the line continues past the end of the diagram to infinity. The solid dot at 2 indicates that the number 2 is included. If the number 2 wasn't included, as with the inequality 4x + 5 < 13 which has solution x < 2, we would use an empty dot like this:

Practice

Q2 Graph the solutions to the inequalities in P1, each on a suitable number line.

Solve

Q51 Solve these inequalities and graph the solutions.

(a)
$$|x| < 5$$

(b)
$$|x-3| \ge 1$$

(c)
$$|8 - 2x| \le 4$$

[Note that |x| means the absolute value of x, i.e. its value with any negative sign removed. So |2| = 2 and |-2| = 2.]

Revise

Revision Set 1

Q61 Solve the following inequalities and graph the solution on a number line.

(a)
$$4h + 9 < 1$$

(b)
$$5(1-x)-2x \ge 11-x$$

Answers

- Q1
- (a) x < 13
- (c) t > 2
- (e) w < -4(g) $x < -\frac{1}{2}$
- (5) 2 72
- (i) $r \ge \frac{23}{6}$

- (b) $a \ge 8.5$
- (d) $x \le 16.5$
- (f) $s \ge 11/3$
- (h) $h \ge -4.5$
- (j) c > -52/9

- Q2
- (a)

- 20 —10
- (b) -20
 - 0 —10
- 0

0

10

10

- (c)
 - <u>–20</u>
- -10
- 0
- 10 20

20

- (d) -20
- -10

-10

- 0
- 10 20

- (e)
- -20
- **-0**
- 10

- (f)
- -20
- -10
- 0
- 10 20

20

-10

0

10

-20

(b) $x \le -1$